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Predicting Cation Exchange Capacity for Soil Survey Using Linear Models

C. A. Seybold,* R. B. Grossman, and T. G. Reinsch

ABSTRACT sons, clay and organic matter differences between soils
should be incorporated into any kind of predictive model.Measuring the cation exchange capacity (CEC) for all horizons of

Several researchers have attempted to predict CECevery map unit component in a survey area is very time consuming
from clay and organic C contents alone, using multipleand costly. The objective of this study was to develop CEC (pH 7
regression. Results show that greater than 50% of theNH4OAc) prediction models that encompass most soils of the United

States. The National Soil Survey Characterization database was used variation in CEC could be explained by the variation in
to develop the predictive models using general linear models. Data clay and organic C content for several New Jersey soils
were stratified into more homogeneous groups based on the organic (Drake and Motto, 1982), for sandy soils in Florida (Yuan
C content, soil pH, taxonomic family mineralogy class and CEC- et al., 1967), for some Philippine soils (Sahrawat, 1983),
activity class, and taxonomic order. Models were developed for each and for four soils in Mexico (Bell and van Keulen, 1995).
strata or data group. Organic matter and noncarbonate clay contents Only a small improvement was obtained by adding pHwere the main predictor variables used. Water at �1500 kPa was used

to the model for four Mexican soils (Bell and van Keu-in lieu of clay content on four groups. Results indicate that between
len, 1995). In B horizons of a toposequence, the amount43 and 78% of the variation in CEC could be explained for the high
of fine clay (�0.2 �m) was shown to explain a largerorganic C data groups; between 53 and 84% could be explained for
percent of the variation in CEC than the total claythe mineralogy groups; between 86 and 95% could be explained for

the CEC-activity class groups; and between 53 and 86% could be content (Wilding and Rutledge, 1966). In gleyed subsoil
explained for the taxonomic orders. The same predictive model was horizons of lowland soils in Quebec, surface area (of the
applicable for Gelisols and Histosols. Inceptisols and Alfisols (�0.3% soil) gave a better prediction of CEC than did total clay
organic C) also shared the same model. In general, the mineralogy/ (Martel et al., 1978). Martel et al. (1978) also showed that
CEC-activity class equations had lower RMSEs than the taxonomic the variations in mineralogical composition, although
order equations. A decision tree, based on how the data was stratified, small, were sufficient to explain nearly 50% of the vari-guides the selection of which model to use for a soil layer. Validation

ation in CEC. Similarly, Miller (1970) found that theresults indicated that the models, in aggregate, provide a reasonable
type of clay alone could explain up to 50% of the varia-estimate of CEC for most soils of the United States.
tion in CEC. Many of the above predictive models are
specific to a region or area and confined to only a few
soil types. Our approach is to develop predictive modelsCation exchange capacity is the total of the ex-
that provide a comprehensive coverage of soils of thechangeable cations that a soil can hold at a speci-
United States.fied pH. Soil components known to contribute to CEC

When using least squares estimates in CEC models,are clay and organic matter, and to a lesser extent, silt
the assumption is made that the compositions of the(Martel et al., 1978; Manrique et al., 1991). The exchange
clay and organic matter are identical from one samplesites can be either permanent or pH-dependent. Mineral
to another and that the soils vary only in the amountssoils have an exchange capacity that is a combination
of the components present (Stevenson, 1994). For thisof permanent and pH-dependent charge sites, while that
reason, regression equations tend to be accurate onlyof organic soils is predominantly pH-dependent. In any
within a limited geographic and climatic zone, wheregiven soil, the number of exchange sites is dependent on
the composition of the clay and organic fractions arethe soil pH; type, size, and amount of clay; and amount,
reasonably homogenous (Helling et al., 1964). When soilsdecomposition state, and source of the organic material
of diverse genesis are included in the analyses and little(Kamprath and Welch, 1962; Parfitt et al., 1995; Syers
or no attempt is made to control for variables such aset al., 1970; Miller, 1970). The relationship between clay
mineralogical composition, soil properties become lesscontent (% by weight) and CEC can be highly variable
predictive (Syers et al., 1970). When soils are groupedbecause different clay minerals have very different CECs,
by similarities in origin or properties, accuracy of pre-and the relative proportion of pH-dependant and per-
dictive models (in general) has been shown to improvemanent CEC varies among clay minerals (Miller, 1970).
(Pachepsky and Rawls, 1999). Drake and Motto (1982)Cation exchange capacity of organic soils increases mark-
grouped soils by taxonomic order or province, whichedly with increases in pH, and increases with greater
proved superior in defining groups for predicting CEC.degrees of humification (Stevenson, 1994). For these rea-
Similarly, Asadu and Akamigbo (1990) predicted CEC
from organic matter and clay content grouped by taxo-
nomic order (Inceptisols, Alfisols, Ultisols, and Oxisols).USDA-NRCS, National Soil Survey Center, 100 Centennial Mall

North, Federal Building, Room 152, Lincoln, NE 68508. Received They indicated that partitioning the data by taxonomic
20 Jan. 2004. Pedology. *Corresponding author (cathy.seybold@nssc. order resulted in regression equations that were signifi-
nrcs.usda.gov). cantly distinct from each other, as the groupings tended

to reduce the variability in soil properties. The U.S. SoilPublished in Soil Sci. Soc. Am. J. 69:856–863 (2005).
doi:10.2136/sssaj2004.0026
© Soil Science Society of America Abbreviations: CEC, cation exchange capacity; NASIS, National Soil

Information System; OC, organic carbon.677 S. Segoe Rd., Madison, WI 53711 USA

856

 Published online May 6, 2005



R
ep

ro
du

ce
d 

fr
om

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a 

Jo
ur

na
l. 

P
ub

lis
he

d 
by

 S
oi

l S
ci

en
ce

 S
oc

ie
ty

 o
f A

m
er

ic
a.

 A
ll 

co
py

rig
ht

s 
re

se
rv

ed
.

SEYBOLD ET AL.: PREDICTING CATION EXCHANGE CAPACITY FOR SOIL SURVEY 857

ceous mineralogy were grouped by CEC-activity class, whereTaxonomy system (Soil Survey Staff, 1999) also classi-
applicable. In Soil Taxonomy, a CEC-activity class is generallyfies soil by mineralogical composition at the family level,
assigned to soils with a mixed or siliceous mineralogy at thewhich may be useful in partitioning soils to improve both
family level (Soil Survey Staff, 1999). However, there are ex-accuracy and reliability of predictive models (Pachepsky
ceptions to assigning CEC-activity classes. They are not as-and Rawls, 1999). signed to Histosols or Histels, or to Oxisols, and Alfisols and

The National Soil Information System (NASIS) is a Ultisols with “kandi” or “kanhap” great groups or subgroups
relational database of the USDA-NRCS that is used to because they would be redundant; all of these would be in a
manage soil survey data. Map unit attributes are stored subactive class by definition (Soil Survey Staff, 1999). In addi-
and maintained in NASIS. Properties in NASIS are es- tion, CEC-activity classes are also not assigned to soils with

sandy, sandy-skeletal, or fragmental particle-size classes. Withintimated, either from direct observation in the field, use
the characterization database many pedons did not have taxo-of predictive models, or laboratory measurement. Cat-
nomic classifications assigned; therefore, for some mineralogyion exchange capacity values (based on the buffered am-
classes there were little or no data available. Only 12 out ofmonium acetate method at pH 7) should be populated
the 21 soil mineralogy classes had enough data from which tofor most horizons of map unit components with a pH
develop a model. To ensure that models are developed thatof �5.5 (Soil Survey Staff, 2002). For soil layers with a cover all soils, the �8% organic C data group was also parti-

pH of �5.5, the effective cation exchange capacity is pop- tioned by taxonomic order. In a second query, records were
ulated. In many cases, CEC values (in addition to other selected where the pH (in water) was �5.5 and organic C
properties) are unavailable in the database because of content was �8%, and then subdivided by taxonomic order.
increases in data requirements over time. Also, it is too There are 12 soil orders in Soil Taxonomy. In total, data were

stratified into 12 mineralogy classes and four CEC-activitytime-consuming and costly to measure CEC everywhere
classes, or 12 soil order groups. The Mollisol and Alfisol ordersin a survey. Soil scientists mapping and making entries
were the most common and have the largest datasets. Separat-into NASIS need a reliable method for estimating CEC.
ing out the higher organic matter layers of the Mollisol andThe estimation procedure should be comprehensive (en-
Alfisol orders increased the R2 and lowered the RMSEs ofcompass most soils of the United States) and be able to
the resulting equations. The organic C break at 0.3% was thepredict CEC from accessory or readily available soil point at which the organic C content became an insignificant

properties. predictor variable in these two soil orders. The two stratifica-
The objectives of this project were to develop CEC pre- tion groupings of the data (by mineralogy/CEC-activity class

diction models that function comprehensively for the or soil order) were compared to determine which grouping
range of U.S. soils. The goal is to use basic soil survey would explain the most variation in the CEC data, and thus

indicate the most homogeneous groups from which modelsdata as input. To improve predictability, the data will be
could later be developed. A third grouping was added in thestratified, such as by soil taxonomic order or mineralogy/
comparison: grouping by horizon designation (e.g., A, Bt, C),CEC-activity class. These prediction models will benefit
which has been used in other studies to stratify the data (Wild-NRCS field soil scientists making entries into NASIS.
ing and Rutledge, 1966; Asadu and Akamigbo, 1990). In addi-More importantly, these models should improve the ac-
tion, model RMSEs were compared between the mineralogy/curacy of estimated CEC data and aid in populating the CEC-activity and soil order equations to aid in determining

database, which will benefit all users of soil survey data which grouping provides the most accurate estimations. Only
and their interpretations. the RMSEs on the log transformed scale were compared.

Soil layers with high organic C contents (�8%) were further
MATERIALS AND METHODS partitioned into six data groups. Thus, a third query of the

database selected records where the pH (in water) was �5.5Data (pre-1999) from the National Soil Survey characteriza-
and total C was �8%. A plot of the CEC versus pH showedtion database in Lincoln, Nebraska, were used to develop the
a bimodal distribution with a pH break at 7.0. Therefore, thispredictive CEC models. The characterization database con-
high organic C data group was subdivided into two groupstains more than 135 000 horizons with measured CEC data,
based on a pH break at 7.0. Then, the �7.0 pH data group wasrepresenting soils from across the continental United States,
further subdivided into four groups based on the degree ofHawaii, Alaska, Puerto Rico, and several foreign countries. Rele-
organic matter decomposition (fibric, hemic, and sapric) andvant data in the database include taxonomic classifications,
an organic C content break at 14.5%. Decomposition statemorphological descriptions, horizon designations, and analyti-
(fibric, hemic, and sapric) of soils with organic C contents �cal data such as organic carbon, exchange characteristics, parti-
14.5% was indicated by O horizon designation (Oi, Oe, andcle-size separates, pH, and water retention characteristics.
Oa, respectively). The fourth group consists of an undivided
group with an organic C content of �14.5%. The �7.0 pH

Stratification of Data data group was subdivided into two groups by an organic C
content of 14.5%. The break at 14.5% organic C separatesThe database was partitioned into more homogeneous soil
mineral from organic soil material. Soil Survey Staff (1999)groups to improve the accuracy of CEC estimates. The first
defines organic materials as having 12 to 20% organic C de-division of the data was based on organic C content. An initial
pending on the clay content and duration of saturation. Anquery of the database selected records where the pH (in water)
organic C content of 14.5% (approximately 25% organic mat-was �5.5 and organic C content was �8%. The break at 8%
ter) was chosen as the break between organic and mineralorganic C is a method break. Organic C by the Walkley–Black
materials for this project. Also, in NASIS, particle size sepa-method is generally reliable only up to 8% (Soil Survey Staff,
rates (sand, silt, and clay) are generally not populated when1995). The �8% organic C data group was further subdivided
organic matter contents are above 25%. For the soil groupsby taxonomic family mineralogy and CEC-activity class. There
with �14.5% organic C, particle-size separates (e.g., clay con-are 21 taxonomic family mineralogy classes excluding mixed and

siliceous (Soil Survey Staff, 1999). Soils with mixed and sili- tent) can be used as predictive variables.
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with the same variables (Fox, 1997). The post hoc Tukey testSoil Properties
(multiple mean comparison procedure) was used for compari-

Variables used in predicting CEC were pH in water, pH son of equation intercepts (Zar, 1999). When intercepts be-
in 0.01 M CaCl2, total clay and total silt (pipette method), tween two equations were not significantly different, then the
noncarbonate clay, organic C (acid-dichromate digestion), to- slope coefficients were compared by checking the significancetal C (dry combustion), and �1500-kPa water (pressure-mem- of the interaction terms (dummy-variable and predictive vari-brane extraction using sieved samples). Cation exchange ca- able). When redundant equations were indicated (no signifi-pacity was determined by NH4OAc at pH 7. All methods are

cant difference between slope coefficients and intercepts), thedescribed by the Soil Survey Staff (1996). All determinations
data groups were combined and a new model was developed.were on air-dried (30–35�C), crushed, and sieved (�2 mm)
Model validation was evaluated by comparing measured ver-soil samples. Data are reported on oven-dry basis. Carbonate
sus predicted CEC values from an independent dataset. Confi-clay has negligible CEC (Shields and Meyer, 1964). Therefore,
dence intervals were calculated for the slope and intercept ofpercent carbonate clay was subtracted from the percent total
the least square estimate line. Statistically significant differ-clay to get noncarbonate clay. This procedure makes it possible
ences were determined using P � 0.05.to obtain the noncarbonate clay percentage and removes the

disadvantage of the particle-size measurement. A �1500-kPa
water to clay ratio of �0.6 has been used to indicate poor RESULTS AND DISCUSSIONdispersion in particle size determinations (Soil Survey Staff,
1995, 1999). Poorly crystalline materials and high organic C Initial correlation analyses conducted within each
contents also tend to increase this ratio. When clay or noncar- data group indicated that total silt, total clay or noncar-
bonate clay was used as a predictor variable, ratios of �0.6 bonate clay, organic C or total C, pH in water or CaCl2,(�1500-kPa water to clay ratio) were excluded from the data. and �1500-kPa water were the variables most highly cor-Also, the �1500-kPa water to clay ratio of �0.6 exclusion was

related with CEC (data not shown). Except for �1500-not used for any of the high organic C data groups.
kPa water, these variables are readily available soil
properties in NASIS; gravimetric �1500-kPa water canModel Validation
be obtained indirectly within NASIS. The most highly

An independent dataset was used to validate the models correlated variable with CEC varied, depending on the
in aggregate. One-hundred and fifty pedons were randomly data group. In general, �1500-kPa water was the singleselected from the National Soil Survey characterization data-

most highly correlated variable with CEC among thebase, from years 2000 to 2002. The soils represent pedons
data groups. Total clay or noncarbonate clay and �1500-from all across the United States, including Alaska and Hawaii.
kPa water were highly correlated with each other (r �Each horizon of each pedon was run through the appropriate
0.90) in most of the data groups. Therefore, they wouldpredictive model to estimate CEC (using the decision tree).

If the horizon pH (in water) was �5.5, no CEC was estimated. be redundant variables if both were included in a regres-
As a result, 793 horizons of estimated CEC values were used sion model. Clay content is a readily available soil prop-
in the validation process. erty, and is preferred over �1500-kPa water. However,

water content at �1500 kPa is preferred as a predictive
Statistics variable when poor clay dispersion in the particle size

determinations is a problem (and/or noncrystalline claysFor each data group, CEC was estimated using general
linear model procedures in SYSTAT Software (2002). Only dominate) for a data group. Field-based clay estimates
data elements that contributed significantly (P � 0.05) to pre- have been determined to be reliable (Nettleton et al.,
dicting CEC were used in the regression equations. Also, only 1999), which were not available for model development.
variables that contributed �5% to the overall improvement Poor clay dispersion is a problem in the amorphic,
of the R2 value were included in the equations. Scatter plots glassy, and isotic mineralogy class data groups, and theof the residuals versus the fitted values of each model were

Spodosol and Andisol soil order data groups.used to indicate whether there was nonlinearity, unequal vari-
There are six high organic C data groups (OC � 8%)ances, and outliers in the data. When a classic horn-shaped

for which prediction models were developed (Table 1).pattern was evident in the plot, natural log transformations
of the data were performed. The horn-shaped pattern indicates For each equation the R2, the standard deviation about
a combination of a poor fit to the subpopulation averages and the regression line (RMSE), and number of samples used
increasing variability (Ramsey and Schafer, 1997). All outliers, (n) are presented. For the high organic C data groups
as identified by the studentized residual in SYSTAT Software with a pH of � 7.0, total C, pH in CaCl2, and noncarbon-
(2002), were removed from the data groups. Pearson correla- ate clay explained between 43 to 63% of the variationtions were performed to determine variable colinearity and

in CEC (Table 1). A variable that may help improve thehelp in the selection of predictive variables. For some data
predictability of CEC for these high organic C groups isgroups (that had low correlation coefficients between variables,
the fiber content (Lynn et al., 1974). Fiber content wase.g., Vertisols), a forward stepwise regression procedure in

SYSTAT Software (2002) was used to help identify additional not explored as a potential predictive variable because
predictive variables from all possible. However, none identi- it is not a readily available data element in NASIS. For
fied proved to be useful predictive variables. Variables were the high organic C data groups with a pH of �7.0, total
then added and subtracted from the general linear model until C and noncarbonate clay explained between 78 and 87%the best model was found that contained statistically sig-

of the variability in CEC. Predictability of CEC wasnificant, intuitively meaningful predictive variables, and vari-
greater for soil horizons with a pH of �7.0. Each of theables that are readily obtainable within NASIS. A dummy-
six predictive models is significantly unique. The six pre-variable regressor (taxonomic order or mineralogy) was used

to evaluate model redundancy between predictive equations diction equations allow for the calculation of CEC for
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Table 1. Cation exchange capacity (CEC) linear models and R 2, root mean square error (RMSE), and n values for the high organic
carbon (OC) and mineralogy/CEC-activity stratification groups.

Grouping Linear model† R2 RMSE n

OC � 8% and pH � 7.0
Eq. [1]; Oa horizons 2.12(totalC) 	 9.992(pHCaCl2) � 10.684 0.52 27.85 283
Eq. [2]; Oe horizons 2.03(totalC) 	 3.396(pHCaCl2) � 2.939 0.63 19.61 286
Eq. [3]; Oi horizons 1.314(totalC) 	 27.047 0.43 17.01 300
Eq. [4]; OC � 14.5% 1.823(totalC) 	 0.398(nclay) 	 15.54 0.42 10.41 133

OC � 8% and pH � 7.0
Eq. [5]; OC � 14.5% exp[1.316(ln totalC) 	 1.063(ln nclay) � 3.211] 0.77 0.476‡ 275
Eq. [6]; OC � 14.5% 4.314(totalC) � 26.492 0.78 16.62 30

OC � 8%
Ferruginous 2.48(OC) 	 0.128(silt) 	 3.208 0.80 2.01 121
Amorphic exp[0.182(ln OC) 	 0.817(ln w15bar) 	 0.736(ln pHw) � 0.608] 0.84 0.262‡ 247
Glassy exp[0.102(ln OC) 	 1.219(ln w15bar) � 0.005] 0.76 0.495‡ 257
Carbonatic exp[0.253(ln OC) 	 0.828(ln nclay) 	 0.321] 0.78 0.348‡ 406
Magnesic 2.38(OC) 	 0.555(nclay) � 0.219(silt) 	 10.428 0.59 6.27 80
Parasesquic exp[0.13(ln OC) 	 0.65(ln nclay) 	 0.340(ln pHw) � 0.406] 0.58 0.325‡ 258
Micaceous exp[0.251(ln OC) 	 0.205(ln clay) 	 0.538(pHw) � 1.241] 0.64 0.464 41
Kaolinitic exp[0.206(ln OC) 	 0.618(ln nclay) 	 0.303(ln silt) 	 0.491(ln pHw) � 1.786] 0.56 0.431‡ 1 204
Smectitic exp[0.033(ln OC) 	 0.861(ln nclay) 	 0.246] 0.75 0.186‡ 1 803
Illitic exp[0.102(ln OC) 	 0.596(ln nclay) � 1.108(ln pHw) 	 2.892] 0.67 0.249‡ 249
Vermiculitic 0.365(nclay) � 9.724(pHw) 	 90.293 0.75 8.49 40
Isotic exp[0.163(ln OC) 	 0.683(ln w15bar) 	 0.812(ln pHw) � 0.299] 0.78 0.329‡ 635
Superactive exp[0.039(ln OC) 	 0.901(ln nclay) 	 0.131] 0.90 0.184‡ 12 685
Active exp[0.015(ln OC) 	 0.987(ln nclay) � 0.576] 0.96 0.133‡ 4 580
Semiactive exp[0.02(ln OC) 	 0.974(ln nclay) � 0.927] 0.94 0.189‡ 1 648
Subactive exp[0.009(ln OC) 	 1.02(ln nclay) � 1.675] 0.91 0.289‡ 256

† nclay, Noncarbonate clay; pHCaCl2, pH in CaCl2; pHw, pH in water; w15bar � �1500-kPa water.
‡ Root mean square error (RMSE) or standard deviation of the mean on the natural log transformed scale.

soil layers with an organic C content of �8% and a soil making them unique equations. All the predictive equa-
tions for the soil groups in Table 1 were determinedpH in water of �5.5.

Prediction models were developed for 12 of the family to be significantly unique. Regression equations were
developed for all 12 soil orders (Table 2). Organic C,mineralogy classes in Soil Taxonomy (Table 1). Organic

C, pH in water, noncarbonate clay, and �1500-kPa noncarbonate clay, total silt, �1500-kPa water, and pH
in water explained between 55 and 86% of the variationwater explained between 56 and 84% of the variability

in CEC of the 12 taxonomic family mineralogy class in CEC within the 12 soil orders (Table 2). The CEC
values for the Vertisol and Oxisol soil orders were thedata groups (Table 1). The CEC for the kaolinitic data

group was the most difficult to predict (R2 � 0.55), most difficult to predict, with an R2 of 0.55 and 0.67,
respectively. Spodosols and Entisols had the greatestwhile the amorphic mineralogy class had the highest

predictability (R2 � 0.84). Clay dispersion is indicated predictability, with R2 values of 0.86 and 0.85, respec-
tively. Two models with different variables were devel-to be a major problem in the amorphic, glassy, and isotic

mineralogy class groups, and thus, �1500-kPa water was oped for the Spodosol order; one using noncarbonate
clay and the other using �1500-kPa water content (Ta-used as a predictive variable instead of percent clay. Silt

was a useful CEC predictor variable for the ferruginous, ble 2). The �1500-kPa water explained 86% of the vari-
ability in CEC alone for the Spodosol order, while or-magnesic, and kaolinitic mineralogy class groups. Soil pH

in water was a useful predictor variable for the amorphic, ganic C and noncarbonated clay explained only 71% of
the variability. In the Andisol order, �1500-kPa waterparasesquic, micaceous, kaolinitic, illitic, vermiculitic, and

isotic mineralogy groups. The mineralogy and high or- was also a useful variable because of clay dispersion
problems. For the Alfisol and Mollisol soil orders, theganic C equations were determined to all be significantly

unique. Either the intercept or one of the slope coeffi- R2 tended to improve when the low organic C horizons
(�0.3%) were separated from the high organic C hori-cients was significantly different in equations with the

same variables. For the regression models presented in zons. When organic C content was �0.3%, it became
an insignificant predictor variable. Tests for redundancythis paper, it is assumed that the taxonomic mineralogy

class reflects that of the whole soil profile and not just among the CEC models containing the same predic-
tor variables indicated no significant difference in thethe mineralogy control section. There are cases where

this assumption fails such as in soils that have a litho- intercepts or the slope coefficients between the Alfisol
(OC � 0.3%) and Inceptisol equations, and betweenlogic discontinuity.

Four CEC-activity class predictive models were de- the Gelisol and Histisol equations. These two pairs of
equations are considered redundant. The new modelsveloped (Table 1). The CEC-activity classes are assigned

to soil with mixed and siliceous mineralogy. Organic C of the combined data groups are shown in Table 2.
In comparison with the previous modeling efforts re-and noncarbonate clay explained between 90 and 96%

of the variation in CEC within the CEC-activity class ported in the literature, lower multiple coefficients of
determination (R2) for the taxonomic orders were ob-groups (Table 1). The intercepts of the four CEC-activ-

ity class models are significantly different from each other, tained by Manrique et al. (1991). They found that clay
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Table 2. Cation exchange capacity (CEC) linear models and R2, root mean square error (RMSE), and n values for the taxonomic order
stratification groups.

Grouping Linear model† R2 RMSE n

Alfisols
OC � 0.3% exp[0.911(ln nclay) � 0.308] 0.73 0.381‡ 4129
OC � 0.3% exp[0.158(ln OC) 	 0.805(ln nclay) 	 0.216]a 0.72 0.305‡ 3206

Andisols exp[0.088(ln OC) 	 0.885(ln w15bar) 	 0.867(ln pHw) � 0.985] 0.77 0.384‡ 1181
Aridisols exp[0.042(ln OC) 	 0.828(ln nclay) 	 0.236] 0.75 0.300‡ 4114
Entisols exp[0.078(ln OC) 	 0.873(ln nclay) 	 0.084] 0.85 0.350‡ 1910
Gelisols exp[0.359(ln OC) 	 0.49(ln clay) 	 1.05]b 0.72 0.509‡ 97
Inceptisols exp[0.134(ln OC) 	 0.794(ln nclay) 	 0.239]a 0.71 0.421‡ 1921
Mollisols

OC � 0.3% exp[0.932(ln nclay) � 0.174] 0.79 0.285‡ 3284
OC � 0.3% exp[0.113(ln OC) 	 0.786(ln nclay) 	 0.475] 0.74 0.203‡ 8132

Oxisols 2.738(OC) 	 0.103(nclay) 	 0.123(silt) � 2.531 0.67 2.79 781
Spodosols exp[0.045(ln OC) 	 0.798(nclay) 	 0.029] 0.71 0.311‡ 243

exp[0.999(ln w15bar) 	 0.317] 0.86 0.315‡ 636
Ultisols exp[0.184(ln OC) 	 0.57(ln nclay) 	 0.365(ln silt) � 0.906] 0.76 0.350‡ 499
Vertisols exp[0.059(ln OC) 	 0.86(ln nclay) 	 0.312] 0.55 0.213‡ 2109
Histosols exp[0.319(ln OC) 	 0.497(ln nclay) 	 1.075]b 0.78 0.358‡ 60
Gelisols and Histosols exp[0.346(ln OC) 	 0.49(ln nclay) 	 1.064] 0.73 0.207‡ 157
Alfisols (OC � 0.3%) and Inceptisols exp[0.141(ln OC) 	 0.797(ln nclay) 	 0.235] 0.72 0.125‡ 5127

† Equations with the same letters are not significantly different from each other. nclay, Noncarbonate clay; pHw, pH in water; w15bar, �1500-kPa water;
OC, organic carbon.

‡ Root mean square error (RMSE) or standard deviation of the mean on the natural log transformed scale.

and organic C accounted for up to 67% of the variation eralogy/CEC-activity variable explained the most varia-
tion in CEC (r 2 � 0.30) followed by soil order (r 2 �in CEC for Alfisols, Inceptisols, Mollisols, and Vertisols,

and up to 78% of the variation in CEC for Entisols and 0.21) and then horizon designation (r 2 � 0.10). Out
of the three grouping variables, taxonomic mineralogy/Spodosols. The data used to develop these models are

from the same database as was used in the present study. CEC-activity may provide for the most homogeneous
soil groups to improve accuracy of estimating CEC. InIn the present study, data with clay dispersion prob-

lems were removed and data transformations were con- support of this, the mean RMSE values of the mineral-
ogy/CEC-activity class equations were significantly lowerducted, which may explain the differences in the ability

to explain variation in CEC (for soil orders) in this study that the mean RMSE of the soil order regression equa-
tions (P � 0.036). This may suggest that the mineralogy/and that of Manrique et al. (1991). Asadu and Akamigbo

(1990) also developed CEC prediction models for only CEC-activity class equations, as a group, might be more
accurate than the soil order regression equations. There-four of the soil orders by horizon. They found organic

matter and clay content to explain between 42% (in fore, the mineralogy class/CEC-activity class prediction
equations should be used first, then the taxonomic orderAlfisols) to 80% (in Ultisols) of the variation in CEC

for all the A horizons and 23% (in Oxisols) to 67% equations. However, there would be some soils where
CEC would not be predicted if only the mineralogy/(in Inceptisols) for all the B horizons. For horizons of

Andisols that have andic properties, Nettleton et al. CEC-activity models were used in Table 1. If an equa-
tion does not exist for a mineralogy class (e.g., ferritic),(2001) found that 69% of the variation in CEC could

be explained by the organic C content alone. then the taxonomic order equations are recommended
to be used. This recommendation along with the pHThe range in property values for each predictive vari-

able used in the development of each equation is pre- and organic C data breaks for the remaining equations
are presented in Fig. 1 as a decision tree. The tree is asented in Table 3. Prediction of CEC for each individual

equation is valid only within the property range of the guide for using the regression equations. For a given soil
layer, if the soil pH is �5.5, then CEC is estimated.predictive variables used to develop the model (Ramsey

and Schafer, 1997). Prediction of CEC and use of the If the organic C content is �8%, then the tree goes
through the data breaks for using the high organic Cregression equations are limited to the range of proper-

ties used in this study, which encompasses most soils of predictive models. If the organic C content is �8%,
then the tree, first, uses the mineralogy/CEC-activitythe United States.
class equations, and then the soil order equations. As
soon as the criteria match for a horizon, that particularModel Selection
predictive model is used to estimate CEC. The decision

In Tables 1 and 2, there are two sets of equations (taxo- tree provides a CEC estimate for every soil layer with
nomic order or mineralogy/CEC-activity equations) a pH of �5.5, given that the pH, organic C content, and
that can be used to predict CEC for soil layers with less soil classification are known.
than 8% organic C. When more than one prediction
equation is available for a particular soil, the most accu- Model Validationrate equation should be used (Pachepsky and Rawls,
1999). Three data grouping variables were compared— A plot of the measured versus predicted CEC values

for 793 horizons from 150 pedons is shown in Fig. 2.by taxonomic family mineralogy/CEC-activity class, tax-
onomic order, and horizon designation. Taxonomic min- Most of the pedons have mixed or siliceous mineralogy
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Table 3. Range in properties of variables used to predict cation exchange capacity (CEC) for the high total carbon (TC) and the family
mineralogy/CEC-activity class data groups, and taxonomic order data groups with soil pH values of �5.5 and organic carbon (OC)
contents of �8%.

Organic C Noncarbonate clay Soil pH (1:1 water) Silt or �1500-kPa water

Grouping Range Mean SD Range Mean SD Range Mean SD Range Mean SD

% %
Oa horizon 11.6–71† 30.0 13.7 2.3–6.8‡ 4.2 1.1
Oe horizon 11.6–63† 32.5 13.2 2.5–6.8‡ 4.3 0.9
Oi horizon 11.6–71† 37.4 11.4
Eq. [4] 8.1–14.5† 10.4 1.9 0.0–89.0 17.7 15.6
Eq. [5] 8.1–14.4† 9.7 1.6 0.1–75.5 18.6 13.0
Eq. [6] 14.6–41† 21.5 6.6
Ferruginous 0.0–7.8 1.26 1.74 8.3–63.6§ 28.8 13.7
Amorphic 0.04–7.9 3.15 2.16 4.0–9.2 6.09 1.03 1.8–56.7¶ 21.8 10.9
Glassy 0.0–7.8 1.1 1.6 1.4–27.0¶ 8.1 1.1
Carbonatic 0.01–7.8 1.09 1.22 2.2–56.6 20.0 9.99
Micaceous 0.06–5.8 1.12 1.37 0.3–54.1 14.6 11.4 5.5–8.1 6.3 0.8
Magnesic 0.16–6.0 1.7 1.4 8.8–55.6 29.8 11.5 8.2–57.1§ 31.7 10.7
Parasesquic 0.02–5.9 0.83 1.03 6.1–81.8 40.1 16.9 3.6–6.7 5.2 0.6
Kaolinitic 0.01–7.73 0.84 1.04 2.8–94.7 49.5 21.5 3.5–8.2 5.3 0.8 1.7–78.2§ 20.3 12.3
Smectitic 0.01–7.1 0.8 0.8 6.8–82.3 39.2 12.8
Illitic 0.01–4.35 0.62 0.7 7.7–79.5 38.9 15.4 5.5–10.3 7.4 0.95
Vermiculitic 4.8–59.6 30.8 17.4 6.0–8.6 7.2 0.9
Isotic 0.02–7.9 1.5 1.7 3.9–8.4 5.5 0.75 0.7–41.0¶ 9.6 6.3
Superactive 0.01–8.0 0.73 0.81 0.1–86.9 22.1 11.2
Active 0.01–5.6 0.42 0.47 1.6–91.5 26.7 14.9
Semiactive 0.01–3.7 0.29 0.28 0.1–94.6 28.6 18.1
Subactive 0.01–2.9 0.27 0.34 0.1–94.9 29.7 20.5
Alfisols

OC � 0.3% 0.1–94.6 24.8 15.0
OC � 0.3% 0.3–7.9 0.84 0.71 2.0–94.4 28.4 15.6

Andisols 0.01–8.0 1.54 1.70 5.5–9.2 6.2 0.60 1.0–60.3¶ 13.5 9.2
Aridisols 0.01–5.1 0.47 0.45 0.1–84.8 22.3 12.8
Entisols 0.01–5.5 0.54 0.58 0.1–89.0 20.7 15.6
Gelisols 0.03–7.07 1.31 1.48 2.3–94.9# 34.1 30.2
Inceptisols 0.01–7.3 0.60 0.75 0.1–92.5 25.0 16.8
Mollisols

OC � 0.3% 1.5–78.0 24.6 11.6
OC � 0.3% 0.3–7.64 1.14 0.86 3.2–92.8 30.4 12.0

Oxisols 0.03–6.1 1.07 1.17 6.1–94.7 58.2 18.2 3.3–58.0§ 21.4 11.7
Spodosols

Eq. [1] 0.01–4.2 0.18 0.42 0.8–46.6 9.2 6.1
Eq. [2] 0.4–43.9¶ 5.2 4.7

Ultisols 0.02–5.9 0.70 0.83 2.0–92.2 29.9 19.0 2.4–79.2§ 30.4 18.1
Vertisols 0.01–5.8 0.79 0.75 15.3–87 51.4 11.6
Histosols 0.11–7.9 1.91 2.17 1.3–95 21.8 15.6

† Percent total C.
‡ pH in CaCl2.
§ Percent silt.
¶ �1500-kPa water.
# Percent clay.

classifications with an assigned CEC-activity class. The cept is not significantly different from zero. This suggests
that the regression models, in aggregate, can provide abreakdown of the soil classifications are: 2% of the

soil layers had �8% organic C, 29% had a taxonomic reasonable estimate of CEC with decreasing reliability
at greater organic C contents. Since these models aremineralogy class other than mixed or siliceous, 44% had

a CEC-activity class, and 25% were estimated based on based on Soil Taxonomy, it is critical that the soils are
classified correctly, especially the mineralogy and CEC-the taxonomic soil order. Of the mineralogy classes,

smectitic was the most common. Superactive was the activity classes. In soil survey, soil scientists will gener-
ally estimate the soil classification based on experiencemost common CEC-activity class. All developed predic-

tion models were used except the vermiculitic mineral- and knowledge of the soils in the area, the morphology,
and maybe some lab data.ogy class and Oxisol soil order equations. The coefficient

of determination (r 2) was 0.87 and RMSE was 6.176.
When the high organic C horizons (OC � 8%) were

CONCLUSIONSexcluded, the RMSE decreased to 4.494, while the r 2

remained the same. This indicates that the high organic There are 12 family mineralogy class and four CEC-
C predictive models are less reliable in predicting CEC. activity class equations, and 10 taxonomic order equa-
The 95% confidence intervals about the slope were tions. Six equations were developed for high organic C
0.952 to 1.004, which includes unity; there is no signifi- content soil layers (grouped by pH and organic C con-
cant difference between the slope and unity. The 95% tent). In total, 28 unique predictions equations were
confidence intervals about the intercept were �0.001 to developed. Dominate variables used in the development

of the models were organic C content, clay and silt con-1.292, which does include zero, which indicates the inter-
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on the pH, organic C content, and taxonomic soil classi-
fication. Validation results indicate that the prediction
equations in aggregate provide a reasonable estimate
of CEC for the range of soils considered here. These
models are not a replacement for direct measurements
in soil survey; measured CEC data are preferred. How-
ever, when measurements cannot be made, soil scientists
have the convenience of using these predictive models
to estimate CEC. As more data become available or
classifications are identified in the database, prediction
equations for the remaining taxonomic mineralogy
classes can be developed. Exploration of other modeling
methods may provide better estimates.
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